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Experimental and numerical study of downward bubbly flow in a pipe
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Abstract

An experimental and numerical study of the local structure of downward gas–liquid flow in a vertical pipe with 20-mm inner diameter
is reported. In the experiment, the electrodiffusion technique was used in combination with electrical conductivity measurements. To
examine the effect of gas-phase dispersion on flow characteristics, two different gas–liquid mixers were used capable of producing
large-diameter (>1 mm) and small-diameter (<1 mm) gas bubbles at identical rate characteristics of the flow. The unified hetero-
geneous-medium mechanics approach was used to develop, in the Eulerian two-velocity approximation, a calculation model for down-
ward turbulent liquid/air bubble flows. It is shown that, as the volumetric gas flow rate of the mixture at the inlet to the pipe increases,
local maxima of continuous phase velocity and bubble concentration emerge in the near-wall zone of the flow, with liquid turbulence
suppressed in the wall zone and enhanced in the core of the flow.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Turbulent gas–liquid flows are widely used in various
technological applications such as nuclear power engineer-
ing, heat power engineering, chemical apparatus, food
industry, and pharmaceutical industry. Information about
the structure and average and fluctuational characteristics
of bubbly flows is necessary in design of advanced techno-
logical equipment.

A good deal of papers was devoted to the experimental
and numerical modeling of vertical bubbly flows [1–25].
Presently, there is a broad range of publications in which
the case of upward flows, that were studied most exten-
sively, was addressed [11,13–23]. Downward flows were
investigated more scantily [1–13,16,25]. The first works
on downward gas–liquid flows were reported in [1–3]. In
[1], the void fraction and pressure drop in upward and
downward flows were measured. It was shown that, with
volumetric gas flow rate ratio at the inlet to the pipe being
identical, the actual void fraction of downward flow is nor-
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mally higher than that of upward flow. In [2], the void frac-
tion, the hydraulic resistance, and the heat transfer and
structure of downward bubbly flows in the co-current
and gas-phase choking regime, were examined. The local
void fraction distribution was shown to display a maxi-
mum located some distance away from the pipe wall, with
a higher gradient of this quantity in the near-wall region,
where it decreases to zero, and with a plateau in the core
of the flow. The distribution of liquid velocity also exhibits
a maximum in the near-wall region.

The authors of [3] investigated the local structure of
downward bubbly flow with small bubbles in a vertical pipe
with 15-mm inner diameter. The local void fraction was
shown to display a peak in the near-wall region. A notable
decrease in the fluctuation velocity of liquid in the near-wall
zone and substantial reduction of the wall-friction pulsation
intensity compared to the case of single-phase flow were
observed. Simultaneously, in the central region the fluctua-
tion velocity was higher than in the case of single-phase flow.
The authors of [4] examined the turbulent structure and the
distribution of phases in downward bubbly flow in a pipe
with 57.2-mm inner diameter. In this study, the local void
fraction, the profiles of liquid velocity, and the Reynolds
stresses were measured. The authors of [5] studied a down-
ward flow in pipes with inner diameters 16 and 24 mm.
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Nomenclature

CD drag coefficient
CL coefficient in the lift force
DxL, DrL turbulent diffusivities of drops in the axial and

radial directions due to the stochastic motion of
drops and their entrainment into the gas flow by
intense vortices (m2/s)

d bubble diameter (m)
g gravitational acceleration (m/s2)
k turbulent kinetic energy (m2/s2)
P pressure (N/m2)
R tube radius (m)
U, V velocity component in axial and radial direc-

tions (m/s)
huvi ¼ �mT

oU
or turbulent stresses in gas-phase (m2/s2)

huPvPi turbulent stresses in dispersed phase (m2/s2)
UR = U � Ub relative velocity of the two phases (m/s)
hu2i, hv2i rms velocity fluctuations in axial and radial

directions (m2/s2)
U* wall friction velocity (m/s)
Ul superficial liquid velocity
x, r axial and radial coordinates (m)
y coordinate normal to the wall (m)
yb the distance from wall to the bubble center (m)
yk ¼ y=

ffiffiffiffiffiffiffiffiffi
mk=~e

p
Taylor microscale

R absolute gas constant (J/(mol K))
Re = U12R/m Reynolds number

Reb ¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU � U bÞ2 þ ðV � V bÞ2

q
=m Reynolds number

of disperse phase
ReT = k2/em turbulent Reynolds number

Tu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=3ðhu2i þ hv2i þ hw2iÞ

p
=U turbulent intensity

in the liquid flow

Greek symbols

a local void fraction
b volumetric gas flow rate ratio
e ¼ ~eþ ê dissipation rate (m2/s3)
~e dissipation rate (m2/s3)
ê ¼ 2l=q½oð

ffiffiffi
k
p
Þ=or�2 rate of energy dissipation in the

near-wall zone (y+ 6 15) (m2/s3)
CE = mT/hu2i is the geometric scale of the continuous

phase turbulence (m)
l dynamic viscosity ((N s)/m2)
m kinematic viscosity (m2/s)
Xe = (15m/e)1/2 time microscale (s)
XE Eulerian time macroscale (s)
XL Lagrangian time macroscale (s)
XeL time of particle interaction with the intense vor-

tices (s)
q density (kg/m3)

s ¼ 4
3

qbd2

qmRebCD
particle relaxation time (s)

Subscripts

1 inlet parameter
b bubble
i current calculation cross-section along the axial

direction
i � 1 previous calculation cross-section along the

axial direction
T turbulent parameter
W parameter at the wall
+ denotes the dimensionless variables in dynamic

universal units
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In recent years, studies of downward bubbly flows
became more and more intense [6–13,15,16,24]. In
[6,7,12], the electrodiffusion technique was used to measure
the wall friction, the void fraction profiles, the axial veloc-
ity of liquid, and the fluctuation component of this veloc-
ity. The authors of [6,7] examined the turbulent structure
and local characteristics of downward flow in a vertical
pipe with 42.2-mm inner diameter. The measurements were
performed for two diameters of gas bubbles, 0.8 and
1.47 mm. In these studies, particular attention was given
to measurements in the near-wall zone of the flow. An
increase in the friction compared to the case of single-phase
flow was established. Suppression of friction pulsations in
the near-wall zone of the flow was observed. Kashinsky
et al. [12] examined the local structure of downward flow
in a pipe with 20-mm inner diameter at low integral volu-
metric gas flow rate ratio (b 6 3%). It was found that the
gas-phase introduced into the flow suppresses the fluctua-
tions of the liquid velocity in the near-wall zone.
In [8], downward bubbly flows in pipes with inner diam-
eters 25.4 and 50.8 mm were investigated. The pipe length
was 3.81 m. The measurements were performed at three
sections along the pipe. In this work, the influence of the
relative motion of the phases on the liquid velocity, local
void fraction, and bubble sizes was examined. In [9–11],
laser Doppler anemometry (LDA) was employed to mea-
sure the profiles of void fraction, average velocities of the
gas and liquid phases, and longitudinal velocity of the
liquid phase. A combined technique based on the conduc-
tion method and on the film-anemometer technique was
used to measure the radial profiles of bubble velocity and
gas void fraction profiles. It was noted that bubbles present
in the downward flow result in the formation of a plateau
in the distributions of liquid velocity. Displacement of the
maximum velocity of liquid off the channel axis was
reported. Apart from the reported experimental study,
Hibiki et al. [9] proposed a classification of downward bub-
bly flows considering the position of the void fraction peak



Fig. 1. Experimental setup.
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in the pipe: (1) core-peaked, (2) bell-typed, (3) off-center
peaked. In addition, the authors proposed an improved
one-dimensional drift-flux model for downward flow
[24,25]. A simple correlation for predicting the local void
fraction of downward flow was proposed. To construct
the model, it is necessary to know the point at which the
bubble concentration vanishes in the flow. These data can
be obtained only from experiments, which circumstance
makes the developed model less valuable.

Experiments showed the absence of bubbles in the near-
wall zone of downward flow. Simultaneously, it was found
that even low volumetric gas flow rate ratios (b < 5%) may
have a profound effect on the profiles of average and pul-
sating characteristics of the liquid phase.

Among the whole variety of numerical simulation stud-
ies of bubbly flows, the works [13–15,17–24] deserve men-
tion. For the most part, these studies addressed the case
of upward flow of two-phase gas–liquid systems. Some
results for downward gas–liquid flows were only reported
in [13,15].

A numerical model predicting how the shape of void
fraction profiles affects the distribution of temperature
and liquid-phase velocity in vertical flows was developed
in [13]. This model can be applied both to upward and
downward flows. In this work, enhanced turbulence due
to gas bubbles present in the flow was taken into account.
The turbulent viscosity was represented as a linear combi-
nation of two terms, one term being due to the liquid-phase
turbulence, which can be calculated by the Reichardt for-
mula, and the other term modeling the additional viscosity
due to the relative gas motion. The second term involves
some empirical constants, this circumstance making the
developed numerical model less general.

In [15], a diffusion-inertia model for the transport of
low-inertia particles of arbitrary density was proposed.
The predicted data were compared with the experimental
data of [16] for gas–liquid flows in vertical pipes (the cases
of downward and upward flow under various conditions
of the effect due to the gravity force). It was shown pos-
sible, in principle, to analyze bubbly flows with the help
of the diffusion-inertia model, initially developed for
gas-dispersed flows. To calculate the liquid turbulence,
the k–e model of turbulence for single-phase flow was
used.

Antal et al. [18] developed a numerical model for trans-
port phenomena in laminar upward bubbly flow. The
model was based on the Eulerian two-velocity approach.
The major forces acting on bubbles in the laminar flow
were the lifting (Saffman) force and the wall force. In
[19], a numerical and experimental study of turbulent
bubbly flow in a triangular channel was reported. In
[21,23], the case of polydispersed two-phase flows was
addressed. The model makes it possible to allow for the
shift of the bubble concentration maximum from the
near-wall zone towards the flow core observed when
the dispersed-phase size increases above some critical
value. Troshko and Hassan [22] developed a numerical
model involving the law of the wall for vertical mono-dis-
persed bubbly flow in a pipe.

In [17,19,21–23], to predict the liquid-phase turbulence,
a two-equation model of turbulence extended to the case of
two-phase flow, was used.

It can be stated that, in spite of the intensive recent
efforts aimed at numerical investigation of downward
gas–liquid flows, gained data cover only a narrow range
of parameters and therefore apply only to particular
conditions.

The purpose of the present study was a numerical and
experimental investigation of the structure of downward
gas–liquid flow in a pipe. A model constructed around
the Eulerian representation for both phases was developed
to numerically examine the structure of downward mono-
dispersed gas–liquid flow. The influence of bubble sizes
on local flow quantities was evaluated.

2. Experimental setup

The experimental setup was a two-phase flow loop,
closed for the liquid flow and open for the gas flow
(see Fig. 1). The liquid from a storage tank, pushed by



Fig. 2. Photos of bubbles from different mixers.
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centrifugal pump, entered, through a rotameter system, a
gas–liquid mixer. The rate of the liquid flow could be
adjusted by valves. The gas was supplied to the mixer from
high-pressure pipeline. The gas pressure, dropped down
with the help of a pressure regulator installed at the inlet
to the setup, was 1 atm. The gas–liquid flow was produced
in an upward section to enter, through a U-bend, a down-
ward section, presenting a vertical stainless-steel pipe with
inner diameter 2R = 20 mm. At this section, visualization
unit and measuring unit were mounted. From the outlet
of the downward section, the gas–liquid mixture entered
the storage tank, in which gas separation was organized.
In the bottom part of the test section, manometer and
valve, used to maintain the test-section pressure in excess
of the atmospheric pressure and to avoid cavitation and
gas leakages from outside, were installed. The temperature
of the test liquid was kept constant within 25 ± 0.2 �C by
an automated temperature control system.

The local flow quantities were measured 2 m (x/(2R) =
100) downstream of the inlet to the downward section of
the pipe. The superficial velocity of the liquid varied in
the interval U = 0.3–0.5 m/s, and the volumetric gas flow
rate ratio was b = 0–0.1.

The hydrodynamic characteristics of the flow were mea-
sured using the electrochemical technique. The test liquid
was a solution of 0.005 M potassium ferro- and ferricya-
nide and 0.25 M of sodium carbonate in distilled water.

To determine the profiles of liquid velocity and the local
void fraction profiles, a ‘‘blunt-nose’’ type flow velocity
probe was used. The same probe was simultaneously oper-
ated in the electroconductivity mode [26,27]. The sensor
was a 50 lm-diameter platinum wire welded into a conical
glass capillary. The diameter of the working tip of the sen-
sor was 60 lm. The glass capillary was cemented into a
holder mounted on a traversing mechanism that permitted
accurate positioning of the velocity probe across the
channel.

To measure the wall friction, an electrochemical wall
shear stress probe was used. The probe was a platinum
plate, cemented into the pipe wall and grounded flush
with it.

To generate bubbly flow, two gas–liquid mixers were
used. In the first mixer, the gas was injected into the gas
flow through 12 capillaries with inner diameter 0.2 mm
installed in the settling chamber, whose inner diameter
was 116 mm. The velocity of liquid in the settling chamber
was low, and free departure of bubbles from capillaries
could be assumed. This mixer was used to produce large
bubbles with a mean diameter of 1.5–2 mm.

To generate smaller bubbles, another mixer was used.
The liquid flow from the pump was divided into two flows
feeding two pipe lines equipped with individual valves and
rotameters. The capillaries were cemented into a glass
insert with inner diameter 20 mm, and the butt ends of
the capillaries were grounded flush with the wall of the
insert. Bubbles were generated in the annular gap formed
by the inner surface of the insert and the outer surface of
the central body, installed co-axially with the insert. The
width of the annular gap was 0.5 mm. By changing the rate
of the liquid flow through the annular gap, the size of pro-
duced bubbles in one and the same regime could be varied.
This mixture was used to produce small-diameter bubbles,
whose mean diameter ranged in the interval 0.4–0.9 mm.

The bubble sizes were determined by filming the flow
with a Nikon Coolpix 5700 digital camera. The filming
was done in a special optical section, where the glass tube
was placed in a Plexiglas box filled with an immersion
liquid for avoiding optical distortions. The photographs
of generated bubbles were processed on a computer using
special software. Fig. 2 shows photographs of the flow
taken at identical rate parameters (superficial gas- and
liquid-flow velocities), but at different bubble sizes.

A detailed analysis of measurement uncertainties for the
electrodiffusional technique applied was reported elsewhere
[26,27]. The measurement uncertainty for the velocity of
liquid and for the fluctuations of this velocity was 4%
and 15%, respectively. The uncertainty in the determina-
tion of mean bubble sizes was about 5%.

3. Statement of the problem

On the whole, the mathematical model used in the pres-
ent study is the same as in [28,29]. The system of governing
equations is based on the Euler two-fluid approach, previ-
ously approbated by the authors for two-phase flows with
liquid droplets and phase changes. In [28,29], turbulent
gas-droplets flow in a pipe [28] and turbulent wall gas-
droplet jet flow [29] with phase changes were simulated,
and a comparison with experimental data was performed.
The comparison with the experiment for the case of the
pipe flow showed the predicted data to well agree with
experimental data both in terms of average and turbulent
characteristics; the latter gave us grounds to employ the
model of [28,29] for the numerical analysis of dynamic
characteristics of bubbly flows in vertical channels.

A substantial advantage of the two-fluid model com-
pared to the trajectory Lagrangian method is that, in this
model, equations of one and the same type and, hence, a
unified numerical solution algorithm for these equations,
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are used to predict the transport phenomena in both phases
[30–32]. The two-fluid models allow one to accurately
describe the forces acting on bubbles in a gas–liquid flow
and responsible for radial displacement of the dispersed
phase.

The main difference of the present study from [28,29]
consists in that, here, we simulate turbulent isothermal
liquid-phase/gas-bubble flow with regard for the inter-
action between the phases, the stochastic motion of the
bubbles, and the turbophoresis. Like in the majority of
previous numerical simulations of bubbly flows [13,15,21–
23], in the present study we ignore fractionation and coag-
ulation of bubbles. The interaction of bubbles with the
channel wall is ignored either because, according to
the experimental data of [6,7,12], in downward flows in
the near-wall zone of the channel there exists a region free
of bubbles. The flow was assumed isothermal, with no
phase transitions occurring at the bubble/liquid interface.
4. Governing equations

4.1. System of equations for the liquid phase

With the adopted assumptions, the set of the continuity
equation, the equation of motion in the axial direction, and
the equation of state for an axisymmetric two-phase heter-
ogeneous flow in the boundary-layer approximation is

oU
ox
þ 1

r
oðrV Þ

or
¼ 0;

q U
oU
ox
þ V

r
oðrUÞ

or

� �
¼ � oP

ox
þ 1

r
o

or
rðlþ lTÞ

oU
or

� �

� 3CDqa
4dð1� aÞU

Rj~U Rj;

q ¼ ð1� aÞP=ðRT Þ; oP=or ¼ 0.

ð1Þ

The equation of motion of the liquid phase involves an
additional term that takes into account the dynamic inter-
action between the phases.

In (1), ~U R ¼ ~U � ~U b, and CD is the drag coefficient for
the bubbles:

CD ¼
48=Reb; Reb < 96;

0:5; Reb P 96:

�

4.2. System of equations for the dispersed phase (bubbles)

In the present study, the following forces acting on a
bubble in a turbulent flow are considered: the drag, the
gravity force, the turbophoresis force, the Archimedean
force, the lift (Saffman) force due to the shear in the liquid
phase velocity, and the effect due to the associated mass.

In the cylindrical coordinate system, the system of the
continuity equation and the equation for the average veloc-
ity components of axisymmetric dispersed flow in the axial
direction can be written as follows:
oðaU bÞ
ox

þ 1

r
oðraV bÞ

or
¼ 0;

U b

oðaU bÞ
ox

þ V b

r
oðraUbÞ

or|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I

þ oðahu2
biÞ

ox|fflfflfflffl{zfflfflfflffl}
II

þ 1

rb
o

or
rbhuPvPi½ �|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
III

¼ �g
ð1� q=qbÞ
ð1þ 0:5q=qbÞ

þ a|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
IV

2
664

3
775� 3CDa

4d
URj~U Rj|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
V

�Dxb

s
oðln aÞ

or|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
VI

.

ð2Þ
Here, I is the momentum convection, II is the turbophore-
sis force, III is the turbulent stress in the dispersed phase,
IV is the effect due to the associated mass and Archimedean
force, V is the drag, and VI is the diffusion displacement of
bubbles due to their concentration gradient. The force due
to the associated mass (IV) in (2) is written in the form that
was validated for a particle migrating in an inviscid liquid
flow [33] and was used in the majority of simulation studies
where the motion of particles or bubbles in turbulent flows
was treated.

The equation of bubble motion in the radial direction is

U b
oðaV bÞ

ox
þ V b

r
oðraV bÞ

or|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I

þ oðahv2
biÞ

or|fflfflfflffl{zfflfflfflffl}
II

¼ 3mTCD

4d
jU Rj oa

or|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
III

þCLaURj oU
or
j|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

IV

� 3CDa
4d
ðURÞj~U Rj|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

V

� CW1 � CW2

db

2yb

� �
4ajURj2

d|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
VI

�Drb

s
o ln a
or|fflfflfflfflffl{zfflfflfflfflffl}

VII

. ð3Þ

The radial displacement of bubbles is due to the following
forces: I—momentum convection, II—turbophoresis force,
III—turbulent dispersion [23], IV—lift (Saffman) force,
V—drag, VI—wall force, and VII—diffusion displacement
of bubbles due to their concentration gradient. The brack-
ets denote averaging over the ensemble of turbulent
realizations.

Here huPvPi is the turbulent stresses in the dispersed
phase [34], Dxb and Drb are the coefficients of the turbulent
diffusion of bubbles in the axial and radial directions due to
the chaotic migration of particles and their involvement in
the gas flow by the high-energy eddies [34], and CL is the
coefficient of proportionality in the expression for the lift
(Saffman) force (IV). The latter coefficient can be deter-
mined from the data of [20]. It should be noted that in
the expression given in [20] the coefficient CL changes its
sign as the bubble diameter increases over 5.6 mm.

The wall force (VI) retains its direction towards the
channel axis both for upward and downward flows. As a
bubble approaches the channel wall, the flow pattern
around the bubble undergoes substantial changes. With
regard for the condition of no-slip of liquid at the rigid pipe
surface, the velocity of the liquid flow past a bubble on the
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side of the bubble facing the wall is lower than on the
opposite side. As a result, there arises a hydrodynamic
force pushing the bubble from the wall toward the channel
axis. According to Antal et al. [18],

CW1 � CW2

d
2yb

� �
2aqjURj2

d
¼ 0 if yb >

CW2

2CW1

d;

where CW1 = �0.06UR � 0.104 and CW2 = 0.147.

4.3. Two-equation model of liquid-phase turbulence

The equations for the turbulence energy k and for the
rate of its dissipation ~e modified to the case of a dispersed
phase present in the flow have the form

q U
ok
ox
þ V

r
oðrkÞ
or

� �
¼ q

r
o

or
r lþ lT

rk

� �
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or

� �
þP� qe

þPk þ Cp
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dð1� aÞ ð4Þ
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þ V

r
oðr~eÞ
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� �

¼ q
r

o
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r lþ lT

re

� �
o~e
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� �
þ ~e

k
ðCe1f1P� Ce2~eqf2Þ

þ Ce3

4

k2

~e
oU
ox

V
r

� �2

þPe þ
~e
k

Cp
aj~URj3

dð1� aÞ . ð5Þ

The constants and the damping functions are the same as
in the Hwang and Lin model of turbulence for single-phase
flow [35]. In (5), P ¼ lT

oU
or

	 
2
is the production of the tur-

bulence energy from the average motion, Pk ¼ � l
2

o
or

k
e

oê
or

	 

,

Pe ¼ � l
r

o
or r e

k
ok
or

	 

, and ê ¼ 2l=q½oð

ffiffiffi
k
p
Þ=or�2 is the rate of

energy dissipation in the near-wall zone (y+ 6 15); for
y+ > 15, ê ¼ 0.

The third term in the right-hand side of (5) accounts for
the stretching of turbulent eddies; in the case of internal
flow, Ce3 = 0.79. The last term in (5), whose form was bor-
rowed from [21], takes into account the bubble-induced
generation of turbulent energy. In the present study, for
the downward flow the value CP = 0.95 was adopted.

4.4. Equations for the second momentums of dispersed-phase

velocity fluctuations

The second momentums of the turbulent fluctuations of
bubble velocity in the longitudinal and cross-flow direc-
tions can be found from the equation [34]
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biÞ
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ox|fflfflfflfflfflffl{zfflfflfflfflfflffl}
III

¼ 2

s
qPhu2i � hu2

bi
	 

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

IV

Ub

ohv2
bi

ox
þ V b

r
oðrhv2

biÞ
or|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I

þ 1

rb
o

or
oðrbhv3

biÞ
or

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

II

¼ 2

s
qPhv2i � hv2

bi
	 

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

IV

. ð6Þ
The terms in the right-hand sides of (6) are sources of bub-
ble velocity fluctuations in the local-equilibrium approxi-
mation, which allows for the participation of the
dispersed phase in the high-energy fluctuations of the liquid
phase only. It is seen from (6) that the intensity of the cha-
otic migration of contamination in the axial direction
increases not only due to the convection (I) and diffusion
(II) transport of the impurity, and due to the action of
the viscosity force (IV), but also due to the turbulence gen-
eration from the average motion of bubbles (III). The third
momentums of velocity pulsations give the diffusion flux of
energy due to the chaotic motion of bubbles in the axial
and radial directions [34]:

hu2
PvPi ¼ �

shv2
bi

3

ohu2
bi

or
; hv3

bi ¼ �shv2
bi

ohv2
bi

or
. ð7Þ

The transfer of the energy related with the chaotic
motion of bubbles is defined by the intensity of dis-
persed-phase velocity fluctuations in the radial direction
and by the gradient of corresponding second momentums.

5. Boundary conditions

At the pipe axis, the symmetry conditions for the gas-
and liquid-phase flows were set:

oU
or
¼ V ¼ oU b

or
¼ V b ¼

ohu2
bi

or
¼ ohv2

bi
or
¼ ok

or
¼ o~e

or
¼ 0:

At the wall, for the velocity of liquid the no-slip condi-
tion and the impermeability condition hold, and the gas
kinetic energy and the dissipation rate of this energy are
zero:

U ¼ V ¼ 0; k ¼ ~e ¼ 0.

The average axial and radial velocities of bubbles, and the
pulsations of these velocities are also zero:

Ub ¼ V b ¼
ohu2

bi
or
¼ ohv2

bi
or
¼ 0.

At the inlet section of the pipe, all characteristics are dis-
tributed uniformly:

U ¼ U 1; V ¼ V 1; b ¼ b1; d ¼ d1; k ¼ k1; ~e ¼ ~e1.

The initial profiles for k and ~e are given in [36]. In the
present study, the inlet liquid-phase turbulence number
was adopted to be Tu1 = 4%.

6. Numerical algorithm

To solve the parabolic equations (the equation of liquid
motion, the equation of the two-parametric model of tur-
bulence, the equation for the axial velocity of bubbles,
and the pulsational equations for the dispersed phase),
we used the method previously developed for boundary-
layer flows in [37]. The difference scheme is accurate to
the second order along both directions. To solve the
system, the sweep method was used [38]. The hyperbolic



Fig. 3. Profiles of the longitudinal velocities of the phases over the pipe
radius. Points—experimental data, curves—predicted data. Solid curves—
liquid, dashed curves—gas. (1) d = 0.613–0.726 mm, (2) 1.62–1.76 mm, (3)
b = 0, (a) U1 = 0.3 m/s, (b) 0.4 m/s.

Fig. 4. Effect of the inlet gas flow ratio on the axial velocity of the liquid
phase. (1) b = 0, (2) 0.02, (3) 0.05, (4) 0.1. U1 = 0.5 m/s, d = 1.7 mm. Solid
curves—liquid in two-phase flow, dashed curve—one-phase liquid flow.
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equations (the continuity equations for the liquid and bub-
bles, and the equation for the radial velocity of the dis-
persed phase) were solved using the Keller box method
described in [38]. The Keller box method has the second
order of accuracy along both coordinates.

The calculations in the present study were performed on
a computation grid having a total of 200 nodes in both
(axial and radial) directions. Methodical calculations were
also performed on a nested grid with 300 nodes over the
pipe length and 300 nodes over the pipe radius. Further
increase in the number of calculation nodes caused no sub-
stantial changes in the calculated data. The calculation
node nearest to the wall was located at y+ = 1. To more
accurately calculate the turbulent parameters in the near-
wall zone with large gradients of these parameters, we used
a grid logarithmically densening in the radial direction. The
densening constant was chosen so that at least ten nodes
were available in the viscous sublayer. Since the grid was
non-uniform in the transverse (cross-flow) direction, we
could conveniently transform the coordinate r so that to
solve the equations on a uniform grid in the computation
domain. In the present study, we used the transformation
of coordinates given in [38]. In the axial direction, the grid
was uniform.

7. Experimental and calculation data, and their discussion

The size of the dispersed phase was d = 0.61–0.73 and
1.62–1.8 mm; this size was constant both over the pipe
length and across the pipe. All computations were per-
formed for mono-disperse composition of the two-phase
flow. The inlet gas flow rate ratio was b = 1–10%. The
range of superficial liquid velocity was U1 = 0.3–0.5 m/s,
corresponding to the pipe Reynolds number Re = U12R/
m � 6200–104.

7.1. Longitudinal velocities of the phases

Cross-sectional profiles of the velocities of the phases for
various sizes of the dispersed phase are shown in Fig. 3a
and b (U1 = 0.3 and U1 = 0.4 m/s, respectively). At low
gas flow rate ratios b, the effect of the bubble size on the
gas velocity is insignificant. In the near-wall zone, the
velocity profiles for the two-phase flow are more filled com-
pared to the liquid phase velocity; on the contrary, in the
near-axis part of the flow these profiles are less filled. Some
difference between the velocities of the two phases is
observed, which becomes more pronounced as the bubble
size increases. It can also be noted that the downward bub-
bly flow displays an increased gradient of liquid-phase
velocity in the near-wall zone.

The profiles of the axial liquid-phase velocity for various
values of b are shown in Fig. 4. Both measured and pre-
dicted profiles of the gas–liquid flow velocity become more
filled with increasing b. Even low concentrations of bubbles
(b = 2%) result in a strong deformation of the liquid veloc-
ity compared to the case of single-phase flow. As the volu-
metric gas flow rate increases, the gradient of the average
carrier-phase velocity in the near-wall zone increases. At
the maximum volumetric gas flow rate ratios (b = 10%),
in the near-wall zone there emerge local maxima of liquid
velocity. The calculated position of the maximum liquid-



Fig. 5. Profiles of liquid velocity in the universal coordinates. The
designations are the same as in Fig. 4.

Fig. 6. Axial fluctuations of the phases in the gas–liquid flow. (a)
U1 = 0.3 m/s, (b) 0.4 m/s. (1) d = 0.613 mm, (2) 1.62 mm, (3) one-phase
liquid flow (d = 0). Solid curves—liquid in two-phase flow, dashed
curves—gas in two-phase flow, dotted curve—one-phase liquid flow.
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phase velocity closely agrees with the measured value
(within 10%).

The profiles of liquid-phase velocity plotted in the uni-
versal coordinates are shown in Fig. 5. An analysis of the
data shows that for the single-phase water flow a good
agreement is observed between the measured and predicted
velocities of the liquid phase. Note that the variation of the
inlet gas flow rate ratio in the range b = 1–10% results in no
substantial changes of the liquid-phase velocity in the vis-
cous sublayer compared to the logarithmic profile. In the
first-order approximation, at low gas flow rate ratios the
velocity profiles can be predicted as the classical distribution
for laminar sublayer. A largest deformation of velocity pro-
files is observed in the buffer layer, this observation being
consistent with the data in Fig. 5. In the near-axis zone of
the two-phase flow, the velocity profiles of the continuous
phase somewhat overly the logarithmic profile and the
velocity profile for the single-phase water flow.

7.2. Fluctuating velocities of the phases

Distributions of axial velocity fluctuations of liquid
(hu2i/U) and bubbles ðhu2

bi=UÞ are shown in Fig. 6a and
b (U1 = 0.3 and U1 = 0.4 m/s, respectively). Here, U is
the local averaged velocity of the liquid phase. Near the
pipe wall, the longitudinal fluctuations of the liquid veloc-
ity in the two-phase flow are weaker than in the single-
phase flow because the liquid here undergoes mixing under
the action of gas bubbles that move with non-zero relative
velocity with respect to the water. An increase in the bubble
size enhances the turbulence of the two-phase gas–liquid
flow. This fact can be explained by flow turbulization
caused by the liquid-flow separation on large particles.
The bubble velocity fluctuation hubi/U are weaker than
the corresponding liquid-velocity fluctuations; this fact
can be explained by the involvement of large bubbles in
the turbulent motion of the liquid phase.

Distributions of the axial velocity fluctuations of liquid
versus the void fraction of the flow are shown in Fig. 7.
Near the wall, the values of hu2i/U are lower than in the
case of the single-phase flow. The pulsations become
weaker in the flow region where the void fraction a almost
vanishes.

7.3. Distribution of local void fraction

Fig. 8 illustrates the effect of bubble sizes on the profiles
of the local void fraction a at fixed volumetric gas flow rate
ratios b (a—across the pipe, b—near-wall part). An
increase in the dispersed-phase size is seen to appreciably
affect the profiles of a. Finer bubbles approach the wall
more closely; this finding can be attributed to lower values
of the radial force factors such as the lift force, the turbu-
lent migration force, and the wall force. The latter is seen
from the predicted concentration profiles in the near-wall
zone (see Fig. 8b) and complies with the measurement data
of [6,7].

The predicted and measured profiles of the local void
fraction across the channel for various inlet volumetric
gas flow rate ratios are shown in Fig. 9. The measured
and simulated data indicate that in downward bubbly flows
the air bubbles are accumulated in the flow core. In the
major portion of the channel the distribution of the local
void fraction is roughly uniform across the pipe. At the
highest gas flow rate ratios (b = 10%), the experimental



Fig. 7. Root-mean-square pulsations of liquid velocity. The designations
are the same as in Fig. 4.

Fig. 8. Local gas void fraction profiles for various bubble sizes. (a) Across
the flow, (b) in the near-wall zone. (1) d = 0.613–0.726 mm, (2) 1.62–
1.76 mm, U1 = 0.3 m/s, b = 0.05.

Fig. 9. Effect of the volumetric gas flow ratio on the void fraction. (1)
b = 0.02, (2) 0.05, (3) 0.1. U1 = 0.5 m/s, d = 1.75 mm.

Fig. 10. Effect of the bubble size on the void fraction. Points—
experimental data of [7], curves—predicted data. U1 = 1 m/s, b = 0.02,
2R = 42.2 mm, x/(2R) = 100. (1) d = 1.5 mm, (2) 0.8 mm.
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data exhibit a maximum in the profiles of a. In the pre-
dicted data, the maximum is lower in amplitude, shifted
towards the pipe axis. The experimental profiles of a
feature almost zero void fraction near the pipe wall; in
the predicted data, an appreciable decrease in the amount
of bubbles in the near-wall zone is also observed, but here
a > 0, especially in the case of the maximum void fraction
(a � 0.03). The thickness of the near-wall layer free of bub-
bles depends on b. As the inlet volumetric gas flow rate
ratio increases, the zone free of bubbles becomes narrower.

Fig. 10 shows the experimental and predicted data [6]
for various mean bubble sizes obtained for a pipe with
the diameter 2R = 42.2 mm. The superficial liquid velocity
here is U1 = 1 m/s, the pipe Reynolds number is
Re = 43,500, and the gas flow rate ratio is b = 2%. An
increase in the dispersed-phase size enhances the transverse
migration of bubbles; as a result, the near-wall zone free of
bubbles becomes narrower, and the local concentration
maximum in the near-axis zone, more distinct. Finer bub-
bles approach the wall more closely. The latter can be
explained by weaker effect of the Saffman and turbulent
migration forces on the radial migration of fine bubbles.

7.4. Distribution of forces acting on a bubble in the turbulent

flow

Fig. 11 shows the distributions of radial forces acting on
bubbles in downward gas–liquid flows versus the size of gas



Fig. 11. Distribution of the force factors over the pipe radius. (a)
d = 0.726 mm, (b) 1.76 mm. (1) Lift force; (2) wall force; (3) turbulent
migration (turbophoresis force); (4) drag force; (5) turbulent diffusion; (6)
turbulent dispersion; (7) total.

Fig. 12. Friction profiles versus the bubble concentration. Points—
experimental data of [7], curves—predicted data, (1) Re = 10,310, (2)
20,620.
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inclusions (the bubble size here is 0.726 mm and 1.76 mm
for Fig. 11a and b, respectively). The positive direction is
the direction from the pipe axis towards the wall. An anal-
ysis of the calculation data in Fig. 11 allows the following
conclusions to be drawn. As the bubble size increases, the
forces acting on the dispersed phase substantially increase
in value. The majority of the force factors retain negative
sign over the whole cross-section of the pipe. The largest
absolute values are displayed by the lifting force, the turbu-
lent-migration force, and the turbulent-dispersion force.
The maxima of these forces are located in the immediate
vicinity of the wall. Towards the pipe axis, these forces
reduce markedly. All the other forces considered in the
present study (namely, the wall force, the drag, and the tur-
bulent-diffusion force) are appreciably weaker. The data of
Fig. 11 prove that the major forces causing the transverse
migration in downward flows are the lift (Saffman) force,
the turbulent migration (turbophoresis) force, and the tur-
bulent dispersion force.

7.5. Wall shear stress

The predicted and measured wall shear stresses [6] ver-
sus the Reynolds number are shown in Fig. 12. With
increase in the flow velocity, an increase of sW is observed.
As the volumetric gas flow rate b increases, the wall friction
also increases. This regularity can be traced both in the
experimental and predicted datasets. An almost linear
dependence of wall shear stress versus the inlet gas flow
rate ratio is observed. One of the reasons for the increased
wall friction is the increase in the liquid velocity gradient in
the near-wall zone at the expense of more gently sloping
velocity profile in the flow core.

8. Conclusions

An Eulerian two-fluid model was developed to predict
momentum- and mass-transfer processes in two-phase
downward gas–liquid channel flow. To model the liquid-
phase turbulence, the modified k–~e model of turbulence is
used. For the dispersed phase, relations of [34] were used,
which were initially developed for the solid phase and then
successfully applied to gas-drop flows with droplet
evaporation.

A numerical simulation of the downward bubbly flow in
a pipe and a comparison with experimental data are per-
formed. Even low concentrations of bubbles cause a sub-
stantial deformation of liquid-velocity profiles compared
to the single-phase flow, especially, in the near-wall zone.
As the gas flow rate ratio at the inlet to the pipe increases,
local maxima of the carrier phase velocity emerge in the
near-wall zone. The model satisfactorily predicts the veloc-
ities of the two phases in the two-phase flow. In the vicinity
of the wall, the liquid-velocity pulsations are weaker com-
pared to those in the single-phase flow. In the near-axis
zone, the pulsations are more intense than in the single-
phase flow. The model is shown to be capable of qualitative
prediction of cross-sectional distributions of bubbles across
the pipe. A good agreement is observed between the pre-
dicted data and measured averaged velocities of liquid, pul-
sations of this velocity, and cross-sectional void fraction
profiles.

The distribution of the forces acting on a bubble in
downward gas–liquid flow was revealed. It is shown that,
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as the bubble size increases, the forces acting on the dis-
persed phase become stronger. Most forces are negative
throughout the whole cross-section of the flow. Largest
absolute values are displayed by the lifting force, the turbu-
lent-migration force, and the turbulent-dispersion force.
The maxima of the forces are observed in the immediate
vicinity of the pipe wall. The major forces causing the
transverse migration in downward flow are the lift (Saff-
man) force, the turbulent migration (turbophoresis) force,
and the turbulent dispersion force.
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